Description
The Nile on eBay Self-Assembled Nanomaterials I by Toshimi Shimizu This text was ranked by ISI as having the Highest Impact Factor of all publications within Polymer Science. It is a collection of concise reports on the physics and chemistry of polymers. FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description Nanotechnology is the creation of useful materials, devices, and systems through the control of matter on the nanometer-length scale. This takes place at the scale of atoms, molecules, and supramolecular structures. In the worldofchemistry,therationaldesignofmolecularstructuresandoptimized control of self-assembly conditions have enabled us to control the resultant self-assembled morphologies having 1 to 100-nm dimensions with sing- nanometer precision. This current research trend applying the bottom-up approach to molecules remarkably contrasts with the top-down approach in nanotechnology,inwhichelectronicdevicesareminiaturizingtosmallerthan 30nm.However,even engineers workingwithstate-of-the-artcomputer te- nology state that maintaining the rate of improvement based on Moore's law will be the most dif?cult challenge in the next decade. On the other hand, the excellent properties and intelligent functions of a variety of natural materials have inspired polymer and organic chemists to tailortheirsyntheticorganicalternativesbyextractingtheessentialstructural elements.In particular, one-dimensional structures in nature with sophis- catedhierarchy,suchasmyelinated axonsinneurons,tendon,proteintubesof tubulin, and spider webs, provide intriguingexamples of integrated functions and properties. Againstthisbackground,supramolecularself-assemblyofone-dimensional architectures like ?bers and tubes from amphiphilic molecules, bio-related molecules, and properly designed self-assembling polymer molecules has - tractedrapidlygrowinginterest.Theintrinsicpropertiesoforganicmolecules such asthe diversity ofstructures, facile implementation offunctionality,and theaggregationproperty,providein?nite possibilities forthedevelopment of new and interesting advanced materials in the near future. The morpholo- cally variable characteristics of supramolecular assemblies can also function as pre-organized templates to synthesize one-dimensional hybrid nanoc- posites. The obtained one-dimensional organic-inorganic, organic-bio, or organic-metal hybrid materials are potentially applicable to sensor/actuator arrays, nanowires,and opto-electricdevices. ThepresentvolumesonSelf-AssembledNano?bers(Volume219)andNa- tubes(Volume220)provideanoverviewonthoseaspectswithineightchapters. Notes Highest Impact Factor of all publications ranked by ISI within Polymer Science Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts Still valid and useful after 5 or 10 years The electronic version is available free of charge for standing order customers at: springer.com/series/12/ Back Cover see table of contents Table of Contents Self-Assembly of Supramolecular Nanofibers.- Self-Assembled Peptide Nanofibers.- Self-Assembled Nanofibers and Related Nanostructures from Molecular Rods.- Functional Self-Assembled Nanofibers by Electrospinning. Review From the reviews:"This series presents … reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. … A variety of nanofibers … with well defined morphologies and dimensions are discussed in terms of self-assembly of molecular and polymer building blocks in bulk solution or confined geometry like nanopores." (Current Engineering Practice, Vol. 219, 2009) Long Description Nanotechnology is the creation of useful materials, devices, and systems through the control of matter on the nanometer-length scale. This takes place at the scale of atoms, molecules, and supramolecular structures. In the worldofchemistry,therationaldesignofmolecularstructuresandoptimized control of self-assembly conditions have enabled us to control the resultant self-assembled morphologies having 1 to 100-nm dimensions with sing- nanometer precision. This current research trend applying the bottom-up approach to molecules remarkably contrasts with the top-down approach in nanotechnology,inwhichelectronicdevicesareminiaturizingtosmallerthan 30nm.However,even engineers workingwithstate-of-the-artcomputer te- nology state that maintaining the rate of improvement based on Moore's law will be the most dif'cult challenge in the next decade. On the other hand, the excellent properties and intelligent functions of a variety of natural materials have inspired polymer and organic chemists to tailortheirsyntheticorganicalternativesbyextractingtheessentialstructural elements. In particular, one-dimensional structures in nature with sophis- catedhierarchy,suchasmyelinated axonsinneurons,tendon,proteintubesof tubulin, and spider webs, provide intriguingexamples of integrated functions and properties. Againstthisbackground,supramolecularself-assemblyofone-dimensional architectures like ?bers and tubes from amphiphilic molecules, bio-related molecules, and properly designed self-assembling polymer molecules has - tractedrapidlygrowinginterest.Theintrinsicpropertiesoforganicmolecules such asthe diversity ofstructures, facile implementation offunctionality,and theaggregationproperty,providein'nite possibilities forthedevelopment of new and interesting advanced materials in the near future. The morpholo- cally variable characteristics of supramolecular assemblies can also function as pre-organized templates to synthesize one-dimensional hybrid nanoc- posites. The obtained one-dimensional organic-inorganic, organic-bio, or organic-metal hybrid materials are potentially applicable to sensor/actuator arrays, nanowires,and opto-electricdevices. ThepresentvolumesonSelf-AssembledNano'bers(Volume219)andNa- tubes(Volume220)provideanoverviewonthoseaspectswithineightchapters. Review Quote From the reviews:"This series presents … reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. … A variety of nanofibers … with well defined morphologies and dimensions are discussed in terms of self-assembly of molecular and polymer building blocks in bulk solution or confined geometry like nanopores." (Current Engineering Practice, Vol. 219, 2009) Feature Highest Impact Factor of all publications ranked by ISI within Polymer Science Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts Still valid and useful after 5 or 10 years The electronic version is available free of charge for standing order customers at: springer.com/series/12/ Details ISBN 354085102X Short Title SELF ASSEMBLED NANOMATERIALS I Pages 175 Series Advances in Polymer Science Language English ISBN-10 354085102X ISBN-13 9783540851028 Media Book Format Hardcover DEWEY 620.5 Series Number 219 Year 2008 Imprint Springer-Verlag Berlin and Heidelberg GmbH & Co. K Place of Publication Berlin Country of Publication Germany Subtitle Nanofibers Edited by Toshimi Shimizu UK Release Date 2008-09-26 Author Toshimi Shimizu Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Publication Date 2008-09-26 Alternative 9783642098789 Illustrations XII, 175 p. Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:96310272;
Anthati Nagaraju
This book is a must-have for anyone interested in nanotechnology and polymer science. The detailed insights into nanofibers and self-assembled nanomaterials are incredibly valuable. The content is well-researched and presented in a clear, engaging way. Highly recommended for professionals and students alike!