Description
The Nile on eBay Hydrogen Bonded Polymers by Wolfgang Binder, L. Bouteiller, G. ten Brinke, O. Ikkala, V.M. Rotello, J. Ruokolainen, S. Srivastava, H. Xu, R. Zirbs W.H. Binder, R. Zirbs: Supramolecular Polymers and Networks with Hydrogen Bonds in the Main- and Sidechain.- L. Bouteiller: Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers.- G. ten Brinke, J. Ruokolainen, O. Ikkala: Supramolecular Materials Based Upon Hydrogen Bonded Polymers.- H. Xu, S. Srivastava, V.M. Rotello: Nanocomposites Based on Hydrogen Bonds. FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description Control of polymeric structure is among the most important endeavours of modern macromolecular science. In particular, tailoring the positioning and strength of intermolecular forces within macromolecules by synthetic me- odsandthusgaining structuralcontrolover the?nalpolymeric materials has become feasible, resulting in the ?eld of supramolecular polymer science. - sides other intermolecular forces, hydrogen bonds are unique intermolecular forces enabling the tuning of material properties via self-assembly processes -1 overawiderangeofinteractionstrengthrangingfromseveralkJmol tosev- -1 eraltensofkJmol . Centralfortheformationofthesestructuresareprecursor molecules of small molecular weight (usually lower than 10 000), which can assembleinsolidorsolutiontoaggregatesofde?nedgeometry. Intermolecular hydrogenbondsatde?nedpositionsofthesebuildingblocksaswellastheir- spectivestartinggeometryandtheinitialsizedeterminethemodeofassembly into supramolecular polymers forming network-, rodlike-, ?brous-, disclike- , helical-, lamellar- and chainlike architectures.In all cases, weak to strong hydrogen-bondinginteractionscanactasthecentralstructure-directingforce fortheorganizationofpolymerchainsandthusthe?nalmaterials'properties. Theimportantcontributionofhydrogenbondstotheareaofsupramole- lar polymer chemistry is de?nitely outstanding, most of all since the potency of hydrogen-bonding systems has been found to be unique in relation to other supramolecular interactions. Thus the high level of structural diversity of many hydrogen-bonding systems as well as their high level of direction- ity and speci?city in recognition-phenomena is unbeaten in supramolecular chemistry. The realization, that their stability can be tuned over a wide range of binding strength is important for tuning the resulting material prop- ties, ranging from elastomeric to thermoplastic and even highly crosslinked duroplastic structures and networks. On the basis of the thermal reversib- ity, new materials with highly tunable properties can now be prepared, - ing able to change their mechanical and optoelectronic properties with very smallchangesofexternalstimuli. Thusthe?eldofhydrogen-bondedpolymers forms the basis for stimuli responsive and adaptable materials of the future. Notes Highest Impact Factor of all publications ranked by ISI within Polymer Science Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts Still valid and useful after 5 or 10 years The electronic version is available free of charge for standing order customers at: springer.com/series/12/ Table of Contents Supramolecular Polymers and Networkswith Hydrogen Bonds in the Main- and Side-Chain.- Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers.- Supramolecular Materials Based On Hydrogen-Bonded Polymers.- Nanocomposites Based on Hydrogen Bonds. Promotional Also available online Long Description Control of polymeric structure is among the most important endeavours of modern macromolecular science. In particular, tailoring the positioning and strength of intermolecular forces within macromolecules by synthetic me- odsandthusgaining structuralcontrolover the'nalpolymeric materials has become feasible, resulting in the ?eld of supramolecular polymer science. - sides other intermolecular forces, hydrogen bonds are unique intermolecular forces enabling the tuning of material properties via self-assembly processes -1 overawiderangeofinteractionstrengthrangingfromseveralkJmol tosev- -1 eraltensofkJmol . Centralfortheformationofthesestructuresareprecursor molecules of small molecular weight (usually lower than 10 000), which can assembleinsolidorsolutiontoaggregatesofde'nedgeometry. Intermolecular hydrogenbondsatde'nedpositionsofthesebuildingblocksaswellastheir- spectivestartinggeometryandtheinitialsizedeterminethemodeofassembly into supramolecular polymers forming network-, rodlike-, ?brous-, disclike- , helical-, lamellar- and chainlike architectures. In all cases, weak to strong hydrogen-bondinginteractionscanactasthecentralstructure-directingforce fortheorganizationofpolymerchainsandthusthe'nalmaterials'properties. Theimportantcontributionofhydrogenbondstotheareaofsupramole- lar polymer chemistry is de'nitely outstanding, most of all since the potency of hydrogen-bonding systems has been found to be unique in relation to other supramolecular interactions. Thus the high level of structural diversity of many hydrogen-bonding systems as well as their high level of direction- ity and speci'city in recognition-phenomena is unbeaten in supramolecular chemistry. The realization, that their stability can be tuned over a wide range of binding strength is important for tuning the resulting material prop- ties, ranging from elastomeric to thermoplastic and even highly crosslinked duroplastic structures and networks. On the basis of the thermal reversib- ity, new materials with highly tunable properties can now be prepared, - ing able to change their mechanical and optoelectronic properties with very smallchangesofexternalstimuli. Thusthe'eldofhydrogen-bondedpolymers forms the basis for stimuli responsive and adaptable materials of the future. Feature Highest Impact Factor of all publications ranked by ISI within Polymer Science Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts Still valid and useful after 5 or 10 years The electronic version is available free of charge for standing order customers at: springer.com/series/12/ Details ISBN 3540685871 Series Advances in Polymer Science Language English ISBN-10 3540685871 ISBN-13 9783540685876 Media Book Format Hardcover DEWEY 547.7 Series Number 207 Year 2007 Imprint Springer-Verlag Berlin and Heidelberg GmbH & Co. K Place of Publication Berlin Country of Publication Germany Author R. Zirbs Birth 1974 Short Title HYDROGEN BONDED POLYMERS 2007/ Pages 206 Edition 2007th DOI 10.1604/9783540685876 Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Edition Description 2007 ed. Publication Date 2007-03-16 Alternative 9783642088131 Edited by Wolfgang Binder Illustrations XI, 206 p. With online files/update. Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:131034805;