Reviews |
"Profs. Zhang, Rouabhia, and Moulton have assembled a group of investigators that are working on issues ranging from materials synthesis, device characterization, and analytical measurements of performance. Of particular interest and value are several reports from clinically-inclined investigators that describe recent studies of electrically-mediated cell response. These areas represent opportunities for future developments and collaborations between chemists, materials scientists, biomedical engineers, and physicians. Taken together, these chapters provide a comprehensive overview of issues related to the interface between active devices and biological systems" --David C. Martin, Karl W. and Renate Böer Professor of Materials Science & Engineering, University of Delaware (from the Foreword), "Profs. Zhang, Rouabhia, and Moulton have assembled a group of investigators that are working on issues ranging from materials synthesis, device characterization, and analytical measurements of performance. Of particular interest and value are several reports from clinically-inclined investigators that describe recent studies of electrically-mediated cell response. These areas represent opportunities for future developments and collaborations between chemists, materials scientists, biomedical engineers, and physicians. Taken together, these chapters provide a comprehensive overview of issues related to the interface between active devices and biological systems" --David C. Martin, Karl W. and Renate Ber Professor of Materials Science & Engineering, University of Delaware (from the Foreword), "Profs. Zhang, Rouabhia, and Moulton have assembled a group of investigators that are working on issues ranging from materials synthesis, device characterization, and analytical measurements of performance. Of particular interest and value are several reports from clinically-inclined investigators that describe recent studies of electrically-mediated cell response. These areas represent opportunities for future developments and collaborations between chemists, materials scientists, biomedical engineers, and physicians. Taken together, these chapters provide a comprehensive overview of issues related to the interface between active devices and biological systems" --David C. Martin, Karl W. and Renate Ber Professor of Materials Science & Engineering, University of Delaware (from the Foreword), "Profs. Zhang, Rouabhia, and Moulton have assembled a group of investigators that are working on issues ranging from materials synthesis, device characterization, and analytical measurements of performance. Of particular interest and value are several reports from clinically-inclined investigators that describe recent studies of electrically-mediated cell response. These areas represent opportunities for future developments and collaborations between chemists, materials scientists, biomedical engineers, and physicians. Taken together, these chapters provide a comprehensive overview of issues related to the interface between active devices and biological systems" --David C. Martin, Karl W. and Renate Böer Professor of Materials Science & Engineering, University of Delaware (from the Foreword) |
Subject |
Textiles & Polymers, Biotechnology, Physics / Polymer, Life Sciences / Cell Biology, Composers & Musicians, Chemistry / Physical & Theoretical, Physics / General |
Synopsis |
This book is dedicated to the field of conductive polymers, focusing on electrical interactions with biological systems. It addresses the use of conductive polymers as the conducting interface for electrical communications with the biological system, both in vitro and in vivo. It provides an overview on the chemistry and physics of conductive polymers, their useful characteristics as well as limitations, and technologies that apply conductive polymers for medical purposes. This groundbreaking resource addresses cytotoxicity and tissue compatibility of conductive polymers, the basics on electromagnetic fields, and commonly used experimental methods., This book is dedicated to the field of conductive polymers, focusing on electrical interactions with biological systems. It addresses the use of conductive polymers as the conducting interface for electrical communications with the biological system, both in vitro and in vivo. It provides an overview on the chemistry and physics of conductive polymers, their useful characteristics as well as limitations, and technologies that apply conductive polymers for medical purposes. This groundbreaking resource addresses cytotoxicity and tissue compatibility of conductive polymers, the basics on electromagnetic fields, and commonly used experimental methods. Readers will also learn how cells are cultured in vitro with conductive polymers, and how conductive polymers and living tissues interact electrically. Throughout the contents, chapter authors emphasize the importance of conductive polymers in biomedical engineering and their potential applications in medicine. |
Harcharan Singh
This book is a must-have for anyone exploring conductive polymers in biomedicine! It brilliantly covers their role in cell biology and medical applications, offering deep insights into electrical interactions with living systems. Well-researched and clearly written, it’s packed with valuable knowledge for researchers and students alike. The hardcover edition is sturdy, and the content is both cutting-edge and practical. Highly recommended for advancing your understanding of conductive polymers in bioengineering!